Transformation of FASTA files into feature vectors for unsupervised compression of short reads databases

Author:

Tang Tao1ORCID,Li Jinyan1ORCID

Affiliation:

1. Advanced Analytics Institute, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia

Abstract

FASTA data sets of short reads are usually generated in tens or hundreds for a biomedical study. However, current compression of these data sets is carried out one-by-one without consideration of the inter-similarity between the data sets which can be otherwise exploited to enhance compression performance of de novo compression. We show that clustering these data sets into similar sub-groups for a group-by-group compression can greatly improve the compression performance. Our novel idea is to detect the lexicographically smallest k-mer (k-minimizer) for every read in each data set, and uses these k-mers as features and their frequencies in every data set as feature values to transform these huge data sets each into a characteristic feature vector. Unsupervised clustering algorithms are then applied to these vectors to find similar data sets and merge them. As the amount of common k-mers of similar feature values between two data sets implies an excessive proportion of overlapping reads shared between the two data sets, merging similar data sets creates immense sequence redundancy to boost the compression performance. Experiments confirm that our clustering approach can gain up to 12% improvement over several state-of-the-art algorithms in compressing reads databases consisting of 17–100 data sets (48.57–197.97[Formula: see text]GB).

Funder

Australia Research Council Discovery Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3