Transcriptome and Metabolome Integration Reveals the Impact of Fungal Elicitors on Triterpene Accumulation in Sanghuangporus sanghuang

Author:

Zhou Linjiang1ORCID,Fu Yan1,Zhang Xinyuan1,Wang Tong1,Wang Guangyuan1,Zhou Liwei2,Yu Hailong3,Tian Xuemei1

Affiliation:

1. Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China

2. State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

3. Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Shanghai 201403, China

Abstract

Sanghuangporus sanghuang is a large wood-decaying mushroom highly valued in traditional Chinese medicine due to its medicinal properties, including hypoglycemic, antioxidant, antitumor, and antibacterial properties effects. Its key bioactive compounds include flavonoids and triterpenoids. Specific fungal genes can be selectively induced by fungal elicitors. To investigate the effect of fungal polysaccharides derived from Perenniporia tenuis mycelia on the metabolites of S. sanghuang, we conducted metabolic and transcriptional profiling with and without elicitor treatment (ET and WET, respectively). Correlation analysis showed significant differences in triterpenoid biosynthesis between the ET and WET groups. In addition, the structural genes associated with triterpenoids and their metabolites in both groups were verified using quantitative real-time polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Through metabolite screening, three triterpenoids were identified: betulinol, betulinic acid, and 2-hydroxyoleanolic acid. Excitation treatment increased the level of betulinic acid by 2.62-fold and 2-hydroxyoleanolic acid by 114.67-fold compared to WET. The qRT-PCR results of the four genes expressed in secondary metabolic pathways, defense gene activation, and signal transduction showed significant variation between the ET and WET groups. Overall, our study suggests that the fungal elicitor induced the aggregation of pentacyclic triterpenoid secondary metabolites in S. sanghuang.

Funder

the National Natural Science Foundation of China

Special Foundation for Taishan Scholars of Shandong Province

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3