Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks

Author:

Guo Yanbu1ORCID,Wang Bingyi2,Li Weihua1ORCID,Yang Bei3

Affiliation:

1. School of Information Science and Engineering, Yunnan University, No. 2 North Cuihu Road, Kunming 650091, P. R. China

2. The Research Institute of Resource Insects, Chinese Academy of Forestry, Bailongsi, Kunming 650224, P. R. China

3. MD. Cardiology Department, The Second People’s Hospital of Yunnan Province, No. 176 Qingnian Road, Kunming 650021, P. R. China

Abstract

Protein secondary structure prediction (PSSP) is an important research field in bioinformatics. The representation of protein sequence features could be treated as a matrix, which includes the amino-acid residue (time-step) dimension and the feature vector dimension. Common approaches to predict secondary structures only focus on the amino-acid residue dimension. However, the feature vector dimension may also contain useful information for PSSP. To integrate the information on both dimensions of the matrix, we propose a hybrid deep learning framework, two-dimensional convolutional bidirectional recurrent neural network (2C-BRNN), for improving the accuracy of 8-class secondary structure prediction. The proposed hybrid framework is to extract the discriminative local interactions between amino-acid residues by two-dimensional convolutional neural networks (2DCNNs), and then further capture long-range interactions between amino-acid residues by bidirectional gated recurrent units (BGRUs) or bidirectional long short-term memory (BLSTM). Specifically, our proposed 2C-BRNNs framework consists of four models: 2DConv-BGRUs, 2DCNN-BGRUs, 2DConv-BLSTM and 2DCNN-BLSTM. Among these four models, the 2DConv- models only contain two-dimensional (2D) convolution operations. Moreover, the 2DCNN- models contain 2D convolutional and pooling operations. Experiments are conducted on four public datasets. The experimental results show that our proposed 2DConv-BLSTM model performs significantly better than the benchmark models. Furthermore, the experiments also demonstrate that the proposed models can extract more meaningful features from the matrix of proteins, and the feature vector dimension is also useful for PSSP. The codes and datasets of our proposed methods are available at https://github.com/guoyanb/JBCB2018/ .

Funder

Personnel Training Program of Academic and Technical Leaders of Yunnan Province

Integration of Cloud Computing and Big Data, Innovation of Science and Education

National Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Molecular Biology,Biochemistry

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3