Efficient prediction of anticancer peptides through deep learning

Author:

Salam Abdu1,Ullah Faizan2,Amin Farhan3,Ahmad Khan Izaz2,Garcia Villena Eduardo4,Kuc Castilla Angel4,de la Torre Isabel5

Affiliation:

1. Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan

2. Department of Computer Science, Bacha Khan University, Charsadda, Pakistan

3. School of Computer Science and Engineering, Yeungnam University, Gyeongsan, Republic of Korea

4. Universidad Europea del Atlántico, Santander, Spain

5. University of Valladolid, Valladolid, Spain

Abstract

Background Cancer remains one of the leading causes of mortality globally, with conventional chemotherapy often resulting in severe side effects and limited effectiveness. Recent advancements in bioinformatics and machine learning, particularly deep learning, offer promising new avenues for cancer treatment through the prediction and identification of anticancer peptides. Objective This study aimed to develop and evaluate a deep learning model utilizing a two-dimensional convolutional neural network (2D CNN) to enhance the prediction accuracy of anticancer peptides, addressing the complexities and limitations of current prediction methods. Methods A diverse dataset of peptide sequences with annotated anticancer activity labels was compiled from various public databases and experimental studies. The sequences were preprocessed and encoded using one-hot encoding and additional physicochemical properties. The 2D CNN model was trained and optimized using this dataset, with performance evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). Results The proposed 2D CNN model achieved superior performance compared to existing methods, with an accuracy of 0.87, precision of 0.85, recall of 0.89, F1-score of 0.87, and an AUC-ROC value of 0.91. These results indicate the model’s effectiveness in accurately predicting anticancer peptides and capturing intricate spatial patterns within peptide sequences. Conclusion The findings demonstrate the potential of deep learning, specifically 2D CNNs, in advancing the prediction of anticancer peptides. The proposed model significantly improves prediction accuracy, offering a valuable tool for identifying effective peptide candidates for cancer treatment. Future Work Further research should focus on expanding the dataset, exploring alternative deep learning architectures, and validating the model’s predictions through experimental studies. Efforts should also aim at optimizing computational efficiency and translating these predictions into clinical applications.

Funder

The European University of Atlantic

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3