Effects of inlet turbulence intensity on wall heat transfer in a turbine guide vane

Author:

Hu Ke-Qi1,Xia Yi-Fan1,Zheng Yao1,Wang Gao-Feng1

Affiliation:

1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China

Abstract

Heat transfer is an important phenomenon that exists in many industrial applications, especially for gas turbines, aeronautical engines. In this work, two different turbulence models ([Formula: see text] and SAS model) are used to investigate the effects of inlet turbulence on wall heat transfer and the characteristics of flow field in a well-known turbine guide vane (LS89). In order to handle the transition, Menter’s [Formula: see text] transition model is used. The simulations show that the inlet turbulence has an apparent effect on the wall heat transfer of the vane. Not only the maximum wall heat transfer coefficient is increased, the distribution of wall heat flux at the suction side is also modified. The isentropic Mach number along the vane surface is insensitive to the variance of inlet turbulence intensity. Besides, a shock appears in the throat and a laminar-to-turbulence transition position moves forward after the main flow turbulence is enhanced. Moreover, the results indicate that SAS model is capable of capturing more flow structures such as reflecting pressure waves and shedding vortexes while the [Formula: see text] model misses them due to the dissipation.

Funder

National Natural Science Foundation of China

Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3