Heat transfer analysis in three-dimensional unsteady magnetic fluid flow of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles: A comparative study

Author:

Kumar R. Naveen1,Gamaoun Fehmi2,Abdulrahman Amal3,Chohan Jasgurpreet Singh4,Gowda R. J. Punith1

Affiliation:

1. Department of Studies and Research in Mathematics, Davangere University, Davangere, Karnataka, India

2. Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia

3. Department of Industrial Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia

4. Department of Civil Engineering and University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India

Abstract

The heat transport analysis in the three-dimensional unsteady flow of non-Newtonian nanofluid is studied in this research communication. Comparison of water-based ternary hybrid nanofluid conveying three various shaped nanoparticles (titanium spherical-carbon nanotube (CNT) cylindrical-graphene platelet) and Zinc Oxide-Society of Automotive Engineers 50 nanolubricant (ZnO-SAE50Nanolubricant) is emphasized with two different models. Also, this paper is mainly focused on an electrically non-conducting and incompressible magnetic liquid with moderate saturation magnetization and low Curie temperature. An infinitely long, straight wire delivering an electric current generates a magnetic field that affects the fluid. To study heat transfer characteristics thermal radiation is taken into account. Pertinent flow expressions are reduced into ordinary differential equations (ODEs) through appropriate transformations. The obtained ODEs are solved by means of the numerical method Runge–Kutta–Fehlberg’s fourth-fifth order method (RKF-45) with shooting technique. Results reveals that the ZnO-SAE50Nanolubricant flow shows maximum heat transport followed by titanium spherical-CNT cylindrical-graphene platelet-water hybrid nanofluid flow for increased values of radiation parameter. Further in this scenario, it is found that the heat transfer rate in ternary hybrid nanofluid increases about 2–5% whereas in Nanolubricant it is about 3–8% for the gradual increasing values of the ferromagnetic interaction parameter.

Funder

Research Center for Advanced Materials Science, King Khalid University

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3