Influence of heat source/sink on a rotating cone in a rotating nanofluid with magnetic field impact: Application of Hosoya polynomial‐based collocation method

Author:

Sharma Ram Prakash1ORCID,Srilatha Pudhari2,Prakash Om3,Kumar R. S. Varun4ORCID

Affiliation:

1. Department of Mechanical Engineering National Institute of Technology Arunachal Pradesh Arunachal Pradesh India

2. Department of Mathematics Institute of Aeronautical Engineering Hyderabad Telangana India

3. Department of Mathematics JECRC University Jaipur India

4. Department of Pure and Applied Mathematics School of Mathematical Sciences Sunway University Jalan Universiti Bandar Sunway Selangor Darul Ehsan Malaysia

Abstract

AbstractThe present analysis considers the angular velocities of the free flow and the arbitrarily fluctuating cone over time, leading to an unsteady stream over a rotating cone in a rotating nanofluid. The effects of heat source/sink and magnetic field on an unsteady flow past a rotating cone in a rotating nanoliquid are considered in this examination. The dimensional governing equations are transformed into nondimensional ordinary differential equations (ODEs) using the similarity variables. The nonlinear system of ODEs has been solved using the Hosoya polynomial‐based collocation method (HPBCM), and the obtained values are compared with the numerical method Runge Kutta Fehlberg's fourth‐fifth order (RKF‐45) scheme. The effects of numerous factors on the momentum and thermal distributions are shown graphically. Results reveal that the ratio of the cone angular velocity to the free stream angular velocity increases the velocity profile but converse trend is seen for the thermal profile. The upsurge in the values of the magnetic parameter intensifies the velocity profile. The rise in the values of the heat source/sink parameter upsurges the thermal profile. As the unsteady parameter increases temperature profile declines.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3