The study of structural, electronic and thermoelectric properties of Ca1−xYbxZn2Sb2 (x = 0, 0.25, 0.5, 0.75, 1) Zintl compounds

Author:

Mili I.12,Latelli H.12,Ghellab T.12,Charifi Z.12ORCID,Baaziz H.12,Soyalp F.3

Affiliation:

1. Department of Physics, Faculty of Science, University of M’sila, 28000 M’sila, Algeria

2. Laboratory of Physics and Chemistry of Materials, University of M’sila, 28000 M’sila, Algeria

3. Theoretical Physics Research Laboratory, Department of Mathematics and Science, Faculty of Education, Yüzüncü Yıl University, 65080 Tuşba, Van, Turkey

Abstract

Based on the electronic structure, the physical properties of [Formula: see text] ([Formula: see text], 0.25, 0.5, 0.75, 1) Zintl compounds are studied. The transport properties can be significantly changed by varying the composition [Formula: see text]. The materials under study are more metallic with increasing [Formula: see text] and behaves like a semiconductor when [Formula: see text] decreases. It is found that [Formula: see text] exhibits a larger thermopower magnitude ([Formula: see text] at [Formula: see text] and the Seebeck coefficient decreases as [Formula: see text] increases. The calculated figure of merit factor of [Formula: see text] is found to be low, this is explained by the fact that its structure is very compact and its bandgap is small which lead to high electrical and thermal conductivity due to high carrier concentration ([Formula: see text] at [Formula: see text]). On other hand a narrow-gap (0.46 eV for [Formula: see text]), provides a balance between a high Seebeck coefficient and low electronic thermal conductivity, with a slight increase in the carrier concentration when the temperature increases ([Formula: see text] at 600 K). As a consequence, [Formula: see text] compound is predicted to have good performance for thermoelectric applications. The electrical [Formula: see text] and the thermal [Formula: see text] conductivity for [Formula: see text] compound in both directions (along [Formula: see text] and [Formula: see text]-axes) are calculated. It is obtained that [Formula: see text] is 120% of [Formula: see text] at high-temperature, whereas [Formula: see text] Seebeck coefficient was higher than [Formula: see text] especially at [Formula: see text] ([Formula: see text]. The large value of [Formula: see text] showed that the transport is dominated by zz-axis.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Reference56 articles.

1. H. Goldsmid, Electronic Refrigeration, Chap. 3 (Pion, London, 1986) pp. 57–87.

2. The best thermoelectric.

3. Zintl phases for thermoelectric devices

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3