Optoelectronics and thermoelectric performances in CuX (X = F, Cl, Br, and I)

Author:

Ghellab Torkia12,Charifi Zoulikha12,Baaziz Hakim12,Latelli Nadjia23

Affiliation:

1. Department of Physics, Faculty of Science , University of M’sila , 28000 M’sila , Algeria

2. Laboratory of Physics and Chemistry of Materials , University of M’sila , M’sila , Algeria

3. Department of Chemistry, Faculty of Science , University of M’sila , 28000 M’sila , Algeria

Abstract

Abstract The current study focused on examining the structural, mechanical, and optoelectronic properties of CuF, CuCl, CuBr, and CuI by the utilisation of the FP-LAPW method. The calculations reveal that GGA is a better fit than LDA for evaluating structural characteristics, including lattice parameters and bulk modulus. The examination of the band structure reveals that CuF exhibits metallic behaviour, whilst the compounds CuCl, CuBr, and CuI exhibit semiconducting properties, characterised by direct fundamental gaps (Γ → Γ) of 0.516, 0.425, and 1.049 eV, respectively. The peak absorption values for CuCl, CuBr, and CuI are located at 10.68 eV, 9.53 eV, and 7.68 eV, respectively. All materials have ultraviolet absorption peaks. Therefore, the compounds demonstrate substantial absorption in the low- and mid-ultraviolet wavelengths. The four compounds exhibit anisotropic properties, possess ductility, and demonstrate mechanical stability. These entities possess the ability to endure a wide range of temperatures. The thermoelectric performance of the three semiconductors, CuCl, CuBr, and CuI, was investigated. At 300 K, the k L values for CuBr, CuCl, and CuI, are 2.89 W/mK, 3.98 W/mK, and 3.56 W/mK, and the Gruneisen values are as follows: γ (CuCl) = 2.4087, γ (CuBr) = 2.4747, and γ (CuI) = 2.1962. At a temperature of 600 K, the k T value is found to be relatively low. The measured values for the k T of CuCl, CuBr, and CuI are around 1.7818 W m−1 K−1, 1.5109 W m−1 K−1, and 2.8580 W m−1 K−1, respectively. At a temperature of 300 K, the Seebeck coefficients (S) for CuCl, CuBr, and CuI are measured to be 1192.7964 μV/K, 1170.5882 μV/K, and −65.7454 μV/K, respectively. At a temperature of 800 K, the p-type compound CuBr exhibits a maximum figure of merit (ZT) value of 0.6691, corresponding to a charge carrier concentration of 31.7926 × 1020 cm3. The CuCl and CuI compounds exhibit the maximum ZT values of 0.52043 and 0.5609, respectively. In order to achieve the desired results, it is necessary to decrease the charge carrier concentration in CuCl to n = 0.514 × 1022 cm−3 and increase the charge carrier concentration in CuI to n = 9.686 × 1022 cm−3; alternatively, the chemical potentials should be decreased by 0.2563 Ryd and 0.3974 Ryd, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3