Affiliation:
1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, Gansu, P. R. China
Abstract
Essential protein plays a crucial role in the process of cell life. The identification of essential proteins not only promotes the development of drug target technology, but also contributes to the mechanism of biological evolution. There are plenty of scholars who pay attention to discover essential proteins according to the topological structure of protein network and biological information. The accuracy of protein recognition still demands to be improved. In this paper, we propose a method which integrates the clustering coefficient in protein complexes and topological properties to determine the essentiality of proteins. First, we give the definition of In-clustering coefficient (IC) to describe the properties of protein complexes. Then we propose a new method, complex edge and node clustering (CENC) coefficient, to identify essential proteins. Different Protein–Protein Interaction (PPI) networks of Saccharomyces cerevisiae, MIPS and DIP are used as experimental materials. Through some experiments of logistic regression model, the results show that the method of CENC can promote the ability of recognizing essential proteins by comparing with the existing methods DC, BC, EC, SC, LAC, NC and the recent UC method.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Gansu Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献