Artificial intelligence knacks-based computing for stochastic COVID-19 SIRC epidemic model with time delay

Author:

Shoaib Muhammad1,Haider Adeeba1,Raja Muhammad Asif Zahoor2,Nisar Kottakkaran Sooppy3ORCID

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan

2. Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, R.O.C.

3. Department of Mathematics, College of Arts and Science, Prince Sattam bin Abdulaziz University, Wadi Al Dawaser 11991, Saudi Arabia

Abstract

Time delays play an important part in modeling the fact that one cannot be communicable for a long time after becoming sick. Delay can be triggered by a variety of epidemiological situations. The most egregious causes of a delay are infection latency in the vector and infection latency in the infected host. The dynamics of susceptible, infected, recovered and cross-immune (SIRC) classed-based model having cross-immune and time-delay in the transmission for spread of COVID-19 abbreviated as (SIRC-CTC-19) are investigated in this study using an intelligent numerical computing paradigm based on the Levenberg–Marquardt Method backpropagated by neural networks (LM-BPNN). The model is mathematically governed by a system of ordinary differential equations that depicts the four nodes as susceptible, infected, recovered and cross-immune ones (SIRC) nodes with cross-immune class and time-delay in transmission components for COVID-19 dissemination (CTC-19). The reference solution of the SIRC model for the spread of COVID-19 is produced by using the explicit Runge–Kutta method for the many scenarios of this model arising from altering delay with regard to time. This reference solution permits the use of evolutionary computing to solve the SIRC-CTC-19 using train, validate and test techniques. The proposed LM-BPNN method’s accuracy has been proven by its results overlapping with explicit Runge–Kutta results Calculation of regression metrics, error analysis of histogram illustrations and learning curves on MSE effectively augment the LM-BPNN’s accuracy, convergence and reliability in solving the SIRC-CTC-19 model.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3