MECHANICAL AND THERMAL PROPERTIES OF PRASEODYMIUM MONOPNICTIDES: AN ULTRASONIC STUDY

Author:

BHALLA VYOMA1,KUMAR RAJ2,TRIPATHY CHINMAYEE3,SINGH DEVRAJ1

Affiliation:

1. Department of Applied Physics, Amity School of Engineering and Technology, 580, Delhi-Palam Vihar Road, Bijwasan, New Delhi 110061, India

2. Department of Physics, NIMS University, Jaipur 303121, India

3. Department of Applied Physics, HMR Institute of Technology and Management, Hamidpur, Delhi 110036, India

Abstract

We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX ( X : N , P , As , Sb and Bi ) along the 〈100〉, 〈110〉, 〈111〉 in the temperature range 100–500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born–Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0–500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon–phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3