Mechanical and thermophysical properties of 4d-transition metal mononitrides

Author:

Yadav Shakti1,Singh Ramanshu P.1,Mishra Giridhar1,Singh Devraj1

Affiliation:

1. Department of Physics, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research , Veer Bahadur Singh Purvanchal University , Jaunpur , 222003 , India

Abstract

Abstract The second and third order elastic constants (SOECs and TOECs) of 4d-transition metal mononitrides XN (X: Zr and Nb) have been computed in the temperature range 0 K–500 K using Coulomb and Born–Mayer potential up to second nearest neighbours. In order to investigate the mechanical stability of XN, the computed values of SOECs have been utilized to find out Young’s modulus, bulk modulus, shear modulus, Zener anisotropy and Poisson’s ratio. Furthermore, the SOECs are applied to compute the wave velocities for shear and longitudinal modes of propagation along ⟨100⟩, ⟨110⟩ and ⟨111⟩ crystallographic orientations in the temperature range 100 K–500 K. Temperature dependent Debye average velocity, ultrasonic Grüneisen parameters (UGPs) and Debye temperature have been evaluated. In present work the thermal conductivity of chosen materials has also been evaluated using Morelli-Slack’s approach. Specific heat and total internal thermal energy have been calculated in the temperature range 100 K–500 K on the basis of Debye theory. Thermal relaxation time, acoustic coupling constants and attenuation of ultrasonic waves due to thermo-elastic relaxation and phonon–phonon interaction mechanisms have been calculated in the temperature range 100 K–500 K. The obtained results of present investigation have been compared with available other similar type of materials.

Funder

Council of Scientific and Industrial Research, India

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3