Effect of ultrasonic power on wettability, porosity and mechanical properties of ultrasonic-aided laser reflow soldering

Author:

Wang Bo1ORCID,Pan Kailin1,Gong Yubing1,Long Yuhong1,Shi Kai1

Affiliation:

1. Department of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China

Abstract

Wettability, porosity and mechanical properties of ultrasonic-aided laser reflow soldering lead-free solder Sn-3.0Ag-0.5Cu (SAC305) on Cu pad have been investigated at ultrasonic vibration (USV) of different power. The parameters of laser reflow soldering are determined by the wetting experiment, and the effects of different ultrasonic powers on the performance of the solder joint are studied. Results showed that USV can improve wettability without keyholes on top of the solder joint, and the contact angle between the solder joint and the substrate decreases first and then increases as the ultrasonic power increases. The cavitation effect caused by USV effectively reduces the porosity of the solder joints. When the ultrasonic power is 225 W, the porosity of the solder joint is reduced from the initial 13.2% to 5.2%. Through X-ray Diffraction (XRD) analysis of the solder joint matrix, all solder joints have diffraction peaks of [Formula: see text]-Sn, Cu6Sn5 and Ag3Sn, and the solder joints show higher diffraction peak intensity with USV treated. Furthermore, the solder joints prepared by ultrasonic-aided laser reflow soldering show better shear strength compared with laser reflow soldering.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3