Electronic exchange-correlation, many-body effect issues on first-principles calculations of bulk SiC polytypes

Author:

Demmouche Kamel1,Coutinho José2

Affiliation:

1. Institut des Sciences, Centre Universitaire-Belhadj Bouchaib-Ain Temouchent, Route de Sidi Bel Abbes, B.P. 284, Ain Temouchent 46000, Algeria

2. Department of Physics and I3N, University of Aveiro, Campus Santiago, Aveiro 3810-193, Portugal

Abstract

The first-principles Projector-Augmented Wave method (PAW) is used to investigate the electronic, phonon band structure and dielectric properties of four bulk silicon carbide (SiC) polytypes. We employ PAW pseudopotential density functional theory with Perdew, Burke and Ernzerhof (PBE) and hybrid HSE06 approximations of the exchange-correlation functional. Many-body effects are incorporated using the GW approximation of the self-interaction to study SiC properties. GW method in its single-shot variant, which is based on the many-body perturbation theory (MBPT), is used to calculate the quasi-particle (QP) energies of the band structure and the dielectric properties for different polytypes. The electronic band structure determination within GW method uses the Wannier procedure where a basis set of maximally localized Wannier function (MLWF) is constructed to interpolate the QP energies of few regular mesh k-points to the high-symmetry lines in Brillouin zone. As a consequence of QP correction to the Kohn–Sham energies, bandgap is increased by upto 3 eV in case of 4H–SiC, as compared to PBE bandgap. GW results are comparable to those of hybrid functionals and are in good agreement with the experimental results. The optical properties are then studied within PBE, HSE06 and include many-body effects. In addition, the phonon band structure has been investigated within HSE06 and compared to previous PBE results. We found good agreement with the previous theoretical results and the experimental available data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3