Ab-initio prediction of structural, electronic and magnetic properties of Hexafluoromanganete(IV) complexes

Author:

Faizan M.1,Khan S. H.1,Khan A.1,Laref A.2,Murtaza G.3

Affiliation:

1. Department of Physics, University of Peshawar, Peshawar, Pakistan

2. Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia

3. Department of Physics, Materials Modeling Lab, Islamia College University, Peshawar, Pakistan

Abstract

In this work, detailed electronic structure calculations of alkali metal fluorides A2MnF6 (A = K, Rb, Cs) have been performed using ab-initio calculating techniques based on density functional theory (DFT). We applied different exchange correlation functionals, namely Wu–Cohen generalized gradient approximation (WC-GGA), modified Becke Johnson potential (mBJ) and GGA plus Hubbard U method in order to treat the exchange correlation energy. The calculated lattice constants are found in excellent agreement with earlier experimental results. The electronic band structure and density of states show that Cs2MnF6 is half metallic, exhibiting semiconductivity in spin up direction and metallic behavior in spin down direction. The compounds, K2MnF6 and Rb2MnF6, are predicted as wide bandgap materials. The DFT + U method gives quite accurate results of the electronic bandgap as compared with other approximations. The states Mn-3d and F-2p contribute largely to the conduction and valence energy bands. Additionally, magnetic calculations reveal strong ferromagnetic nature of these compounds. The half-metallic nature along with ferromagnetism make Cs2MnF6 a promising candidate for future applications in spintronics. Furthermore, the wide bandgap observed in K2MnF6 and Rb2MnF6 indicate their utility for light-emitting diodes (LEDs) transparent lenses and optical coatings.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3