Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6
Affiliation:
1. GAZİ ÜNİVERSİTESİ, FEN FAKÜLTESİ, FİZİK BÖLÜMÜ
Abstract
The half-metallic calculations of new variant perovskites Li2CrO6 and Li2CuO6 were carried out by using WIEN2k computational code. First, the ferromagnetic (FM) and non-magnetic (NM) phases were compared, and FM phases were obtained energetically more stable. The equilibrium lattice constants were obtained as 7.63 Å and 7.66 Å for Li2CrO6 and Li2CuO6, respectively. Second, the electronic calculations were performed, and the semiconduction properties were seen in spin-up states while spin-down states showed metallic nature. The band gaps were obtained as 1.806 eV and 1.177 eV for Li2CrO6 and Li2CuO6, respectively. Since variant perovskites Li2CrO6 and Li2CuO6 showed 100% spin polarizations, these were obtained as true half-metallic ferromagnetic materials. Then the total magnetic moments were obtained as 4.00 μB/f.u., 5.00 μB/f.u. When both the electronic and magnetic properties of the compounds are examined, the variant perovskites Li2CrO6 and Li2CuO6 are suitable materials for spintronics applications.
Publisher
Gazi University Journal of Science
Subject
Multidisciplinary,General Engineering
Reference50 articles.
1. [1] Misra, P.K., “Chapter 11 – Spintronics”, Physics of Condensed Matter, 339-368, (2012). 2. [2] Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.L., Dieny, B., Pirro, P., Hillebrands, B., “Review on spintronics: Principles and device applications”, Journal of Magnetism and Magnetic Materials, 509: 166711, (2020). 3. [3] El-Ghazaly, A., Gorchon, J., Wilson, R.B., Pattabi, A., Bokor, J., “Progress towards ultrafast spintronics applications”, Journal of Magnetism and Magnetic Materials, 502: 166478, (2020). 4. [4] Jullière, M., “Tunneling between ferromagnetic films”, Physics Letters A, 54: 225, (1975). 5. [5] Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J., “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Physical Review Letters, 61: 2472, (1988).
|
|