Entropy optimized flow of hybrid nanofluid with partial slip boundary effects and induced magnetic field

Author:

Nadeem Sohail1,Ishtiaq Bushra1ORCID,Akkurt Nevzat2,Ghazwani Hassan Ali3

Affiliation:

1. Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan

2. Rare Earth Elements Application and Research Center, 62000 Tunceli, Turkey

3. Department of Mechanical Engineering, Faculty of Engineering, Jazan University, P. O. Box 45124, Jazan, Kingdom of Saudia Arabia

Abstract

There are various implementations of common fluids in industrial and chemical processes. With the cooperation of the nanoparticles, the lower thermal properties of such fluids can be augmented. By using a new kind of nanofluid namely hybrid nanofluid, the heat transfer rate of such fluids can be boosted more quickly. The main intention of this research is on entropy analysis in the stagnant point flow of a hybrid nanofluid. The mixed convection nonlinear thermal radiative flow on a stretchable vertical sheet is examined under the influences of the induced magnetic field and chemical reactions. The impacts of Joule heating, partial slips and viscous dissipation are also involved. After the execution of the appropriate similarity transformations, the constituting equations of the flow problem emerge as the nonlinear dimensionless setup of ordinary differential equations. An amplification is examined in the velocity field, entropy generation, and induced magnetic field relative to the mixed convection parameter. With the improved Brinkman number, an augmentation is developed in the entropy of the system. Moreover, both the heat transfer rate and the surface drag force exhibit an accelerating behavior relative to the mixed convection parameter.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3