Mathematical analysis of flow passing through a rectangular nozzle

Author:

Haider Jamil Abbas1,Muhammad Noor1

Affiliation:

1. Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600, Pakistan

Abstract

Practically speaking, fluid flow in round and noncircular nozzle is a very regular occurrence. The cold and hot water used in our homes is delivered to us via pipes. Water is delivered throughout the city via large pipe networks. Large pipelines carry natural gas and oil hundreds of kilometres from one place to another. During the operation of an engine, cooling water is carried by hoses to the radiator’s pipes, in which it is cooled as it travels. Experimentally, we detected the results of the model because there is no restriction on the application of experimental research to a certain sector or kind of concept. It may be used for a broad range of events and circumstances. Under parabolic velocity conditions, fluid (Water Pr 6.9) flows from the inlet position. The top and bottom walls of the rectangular nozzle are also moving at the same velocity as they are at the inlet position. Due to the movement of the walls, fluid is compressed in the particular region and also exhibits the same parabolic behavior. The solution of the coupled equations is determined by using the Finite Volume Method (FVM). When partial differential equations are expressed as algebraic equations, the FVM may be used to evaluate them. It can be used to evaluate elliptic, parabolic, and hyperbolic partial differential equations. Using FVM, it is necessary to know the values (and derivatives) of multiple variables at the cell faces, when the values (and derivatives) of these variables are only known at the cell centres. When determining these variables for convective terms, it is common to take the direction of the flow into consideration. The numerical results of the velocity and the pressure could be seen in the rectangular nozzle.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3