THE STRENGTH OF SUBMICRON-SIZED MATERIALS

Author:

NGAN A. H. W.1,WO P. C.1,ZUO L.1,LI H.1,AFRIN N.1

Affiliation:

1. Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's of Republic China

Abstract

Recent rapid advancements in nano- and micro-machinery technologies call for an urgent need to understand the mechanical behaviour of materials of dimensions in the sub-micron regime. The initial yield strength of submicron crystals exhibits remarkable statistical scatter as well as dependence upon size and time under load. Submicron-sized materials are also found to creep many orders of magnitude faster than bulk counterparts. In this paper, the recent experimental evidence for these phenomena is reviewed. Theoretical explanation of these phenomena is also discussed. The statistical scatter and time dependence of the yield strength are interpreted by a scaling model derived from atomistic simulations. The results indicate that, within a certain load range, the strength of a sub-micron sized material is not deterministic and can only be described by a survival probability. The much faster creep in the submicron regime is interpreted in terms of the much shorter diffusion length compared to bulk creep.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3