Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments

Author:

McElhaney K. W.,Vlassak J. J.,Nix W. D.

Abstract

The phenomena of pile-up and sink-in associated with nanoindentation have been found to have large effects on the measurements of the indentation modulus and hardness of copper. Pile-up (or sink-in) leads to contact areas that are greater than (or less than) the cross-sectional area of the indenter at a given depth. These effects lead to errors in the absolute measurement of mechanical properties by nanoindentation. To account for these effects, a new method of indenter tip shape calibration has been developed; it is based on measurements of contact compliance as well as direct SEM observations and measurements of the areas of large indentations. Application of this calibration technique to strain-hardened (pile-up) and annealed (sink-in) copper leads to a unique tip shape calibration for the diamond indenter itself, as well as to a material parameter, a, which characterizes the extent of pile-up or sink-in. Thus the shape of the indenter tip and nature of the material response are separated in this calibration method. Using this approach, it is possible to make accurate absolute measurements of hardness and indentation modulus by nanoindentation.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference13 articles.

1. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments

2. Nanoindentation of nanocrystalline ZnO

3. Hardness measurement at penetration depths as small as 20 nm

4. 6. Doerner M. F. , Mechanical properties of metallic thin films on substrates using sub-micron indentation methods and thin film stress measurements techniques, Ph.D. Thesis, Stanford University (1987).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3