Affiliation:
1. Department of Physics, Lanzhou University of Technology, Lanzhou 730050, P. R. China
2. College of Mechano-Electronic Engineering, University of Technology, Lanzhou 730050, P. R. China
Abstract
Target waves in excitable media such as neuronal network can regulate the spatial distribution and orderliness as a continuous pacemaker. Three different schemes are used to develop stable target wave in the network, and the potential mechanism for emergence of target waves in the excitable media is investigated. For example, a local pacing driven by external periodical forcing can generate stable target wave in the excitable media, furthermore, heterogeneity and local feedback under self-feedback coupling are also effective to generate continuous target wave as well. To discern the difference of these target waves, a statistical synchronization factor is defined by using mean field theory and artificial defects are introduced into the network to block the target wave, thus the robustness of these target waves could be detected. However, these target waves developed from the above mentioned schemes show different robustness to the blocking from artificial defects. A regular network of Hindmarsh–Rose neurons is designed in a two-dimensional square array, target waves are induced by using three different ways, and then some artificial defects, which are associated with anatomical defects, are set in the network to detect the effect of defects blocking on the travelling waves. It confirms that the robustness of target waves to defects blocking depends on the intrinsic properties (ways to generate target wave) of target waves.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献