Exponential space and thermal-dependent heat source effects on electro-magneto-hydrodynamic Jeffrey fluid flow over a vertical stretching surface

Author:

Sharma B. K.1,Kumar Anup1,Gandhi Rishu1,Bhatti M. M.2ORCID

Affiliation:

1. Department of Mathematics, Birla Institute of Technology and Science, Pilani, Rajasthan, India

2. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, P. R. China

Abstract

This paper deals with the study of an incompressible electro-magneto-hydrodynamic (EMHD) Jeffrey fluid flow over a vertical nonlinear stretching surface of variable thickness. Heat and mass transfer effects are analyzed by considering different source terms like viscous dissipation, Ohmic heating, thermophoresis, Brownian motion, thermal heat source, exponential heat source and activation energy. Governing equations for the flow system are converted into dimensionless forms using appropriate similarity transformations. The solution for the resulting governing equations is obtained by using the shooting technique with RK-4 method. The effects of various physical parameters such as magnetic field parameter [Formula: see text], Grashof number (Gr), solutal Grashof number [Formula: see text], Brownian diffusion parameter [Formula: see text], thermophoresis diffusion parameter [Formula: see text], thermal heat source parameter [Formula: see text], exponential heat source parameter [Formula: see text], Prandtl number (Pr) and Lewis number (Le) are presented with the help of graphs. It is observed that the heat transfer effects increase by increasing thermal and exponential heat sources, and mass transfer effects enhance by increasing the activation energy. Entropy generation for this flow system is also analyzed. Entropy decreases with an increase in the electric field parameter. In contrast, the Bejan number initially increases with an increase in the electric field parameter. After some particular value of electric field parameter, it changes its behavior in the boundary layer and decreases with an increase in the electric field parameter. Entropy and Bejan number increase with an increment in the concentration difference parameter. The accuracy of the results is validated by those of published literature and found in reasonable justification. The present results may be helpful in many engineering and industrial applications like manufacturing lubrication, natural gas networks, cooling nuclear reactors and spray processes.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3