The new analytical and numerical analysis of 2D stretching plates in the presence of a magnetic field and dependent viscosity

Author:

Hajizadeh Shahryar1,Jalili Payam1,Jalili Bahram1,Ganji Davood Domiri2ORCID

Affiliation:

1. Department of Mechanical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran

2. Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran

Abstract

This study explores heat transfer in a system involving Jeffery fluid of MHD flow and a porous stretching sheet. The mathematical representation of this system is initially described using a partial differential equation (PDE), which is then converted into an ordinary differential equation (ODE) through numerical techniques such as Lie similarity and transformation methods, along with the shooting approach. The results indicate that altering the variables of Jeffery fluid, heat source, porosity on a stretching sheet, and the physical characteristics of the magnetic field within the system leads to an upward trend. Implementing this enhanced heat transfer system can yield benefits across various domains, including industrial machinery, mass data storage units, electronic device cooling, etc., thereby enhancing heating and cooling processes. Furthermore, the study also utilized Akbari-Ganji’s Method, a new semi-analytical method designed to solve nonlinear differential equations of heat and mass transfer. The results obtained from this method were compared with those from the finite element method for accuracy, efficiency, and simplicity. This research provides valuable insights into heat transfer dynamics in complex systems and offers potential applications in various industrial settings. It also contributes to developing more efficient and effective heat transfer techniques.

Publisher

SAGE Publications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3