Heat transfer analysis in the peristaltic flow of Casson nanofluid through asymmetric channel with velocity and thermal slips: Applications in a complex system

Author:

Irfan Muhammad1,Nazeer Mubbashar2ORCID,Hussain Farooq3,Siddique Imran1

Affiliation:

1. Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan

2. Department of Mathematics, Institute of Arts and Sciences, Government College University, Faisalabad Chiniot Campus, Chiniot 35400, Pakistan

3. Department of Mathematical Sciences (FABS) BUITEMS, Quetta 87300, Pakistan

Abstract

This investigation articulately addresses the role of gold nanoparticles in medical sciences from a different perspective. Aiming to highlight the significant usage of nanoparticles, four different types such as spherical, platelets, cylindrical and brick-like nanoparticles are brought into consideration with the main focus to achieve maximum heat enhancement. This motivation leads to mathematically formulating an electroosmosis blood flow. Casson fluid is treated as physiological fluid through an asymmetric microchannel. The nonlinear term of radiative heat flux is added on the right-hand side of the heat equation to report the impact of radiation which is beneficial in skin diseases. A closed-form solution is achieved with the help of physical approximation. Moreover, analytical expressions for velocity distribution, temperature field, shear stress, heat transfer rate and pressure gradient have been provided. The expression of stream function is also presented and the trapping phenomena are discussed. Besides studying the tremendous capacity of gold particles to enhance the heat transfer rate for targeting the maligned tissues as a prime objective, the current survey will also assist readers to explore the other similar metallic particles which can effectively be used as an alternative.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3