Effects of complete slip conditions on the peristaltic pumping of a Casson nanofluid with suction and injection in a vertical channel

Author:

Vijayakumar P.1,Reddy R. Hemadri1ORCID

Affiliation:

1. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India

Abstract

This study investigates the effects of complete slip conditions on the peristaltic pumping of a Casson nanofluid with suction and injection in a vertical due to the crucial role that nano liquids play in a variety of technological and medical fields, particularly in peristalsis, a mechanism that transports liquids. The Casson fluid belongs to a class of non-Newtonian fluids that, through a particular stress threshold magnitude, exhibit elastic solid behavior before changing to liquid behavior. These fluids have several uses in engineering, food preparation, drilling and other fields. After establishing the governing conservation equations, the resulting flow model is effectively simulated using the realistic assumptions of a long wavelength and a low Reynolds number. The temperature distributions, velocity, pressure rate per wavelength and nanoparticle concentration of the resulting flow problem have been solved analytically. The effects of all physical factors on temperature, velocity, concentration fields, pressure rate, frictional force and pressure gradient are graphically examined using Wolfram MATHEMATICA software. There are a variety of biofluids that cannot be classified as liquids. For example, blood contains WBC, RBC and plasma. It is essential to model biofluids (blood) as nanofluids given the physical properties of these biofluids. According to reports, one of the finest yield stress models is the Casson model, and blood exhibits a similar behavior. We took these facts into consideration when thinking about Casson nanofluid flow in a vertical layer under peristalsis. Additionally, the suction and injection mechanisms can be used to represent the exchange of carbon dioxide in bold. In order to understand how blood flows through small blood vessels, this model must be examined. The obtained results show that the Newtonian case and those found in the literature have a very good agreement. Since the liquid moves faster and more effectively when the value is increased, it becomes clear that this increases the strength of the velocity.  In other words, nanoperistaltic pumps can maintain a pressure differential that increases or decreases at all operating flow rates with an increasing thermophoresis effect. Furthermore, it is obvious that the pressure reduction in a Casson fluid is greater than in a Newtonian fluid.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3