High-Level Mission Specification and Planning for Collaborative Unmanned Aircraft Systems Using Delegation

Author:

Doherty Patrick1,Heintz Fredrik1,Kvarnström Jonas1

Affiliation:

1. Linköping University, S-581 83 Linköping, Sweden

Abstract

Automated specification, generation and execution of high level missions involving one or more heterogeneous unmanned aircraft systems is in its infancy. Much previous effort has been focused on the development of air vehicle platforms themselves together with the avionics and sensor subsystems that implement basic navigational skills. In order to increase the degree of autonomy in such systems so they can successfully participate in more complex mission scenarios such as those considered in emergency rescue that also include ongoing interactions with human operators, new architectural components and functionalities will be required to aid not only human operators in mission planning, but also the unmanned aircraft systems themselves in the automatic generation, execution and partial verification of mission plans to achieve mission goals. This article proposes a formal framework and architecture based on the unifying concept of delegation that can be used for the automated specification, generation and execution of high-level collaborative missions involving one or more air vehicles platforms and human operators. We describe an agent-based software architecture, a temporal logic-based mission specification language, a distributed temporal planner and a task specification language that when integrated provide a basis for the generation, instantiation and execution of complex collaborative missions on heterogeneous air vehicle systems. A prototype of the framework is operational in a number of autonomous unmanned aircraft systems developed in our research lab.

Publisher

World Scientific Pub Co Pte Lt

Subject

Control and Optimization,Aerospace Engineering,Automotive Engineering,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3