COMPLEX-VALUED MINIMAL RESOURCE ALLOCATION NETWORK FOR NONLINEAR SIGNAL PROCESSING

Author:

DENG JIANPING1,SUNDARARAJAN N.1,SARATCHANDRAN P.1

Affiliation:

1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

This paper presents a sequential learning algorithm and evaluates its performance on complex valued signal processing problems. The algorithm is referred to as Complex Minimal Resource Allocation Network (CMRAN) algorithm and it is an extension of the MRAN algorithm originally developed for online learning in real valued RBF networks. CMRAN has the ability to grow and prune the (complex) RBF network's hidden neurons to ensure a parsimonious network structure. The performance of the learning algorithm is illustrated using two applications from signal processing of communication systems. The first application considers identification of a nonlinear complex channel. The second application considers the use of CMRAN to QAM digital channel equalization problems. Simulation results presented clearly show that CMRAN is very effective in modeling and equalization with performance achieved often being superior to that of some of the well known methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3