A Novel Hybrid Model Using RBF and PSO for Net Asset Value Prediction

Author:

Anish C. M.1,Majhi Babita1,Majhi Ritanjali2

Affiliation:

1. Guru Ghasidas Vishwavidyalaya, India

2. NIT Warangal, India

Abstract

Net asset value (NAV) prediction is an important area of research as small investors are doing investment in there, Literature survey reveals that very little work has been done in this field. The reported literature mainly used various neural network models for NAV prediction. But the derivative based learning algorithms of these reported models have the problem of trapping into the local solution. Hence in chapter derivative free algorithm, particle swarm optimization is used to update the parameters of radial basis function neural network for prediction of NAV. The positions of particles represent the centers, spreads and weights of the RBF model and the minimum MSE is used as the cost function. The convergence characteristics are obtained to show the performance of the model during training phase. The MAPE and RMSE value are calculated during testing phase to show the performance of the proposed RBF-PSO model. These performance measure exhibits that the proposed model is better model in comparison to MLANN, FLANN and RBFNN models.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3