Design and Implementation of a Spiking Neural Network with Integrate-and-Fire Neuron Model for Pattern Recognition

Author:

Rashvand Parvaneh1,Ahmadzadeh Mohammad Reza1,Shayegh Farzaneh1

Affiliation:

1. Digital Signal Processing Research Lab, Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

Abstract

In contrast to the previous artificial neural networks (ANNs), spiking neural networks (SNNs) work based on temporal coding approaches. In the proposed SNN, the number of neurons, neuron models, encoding method, and learning algorithm design are described in a correct and pellucid fashion. It is also discussed that optimizing the SNN parameters based on physiology, and maximizing the information they pass leads to a more robust network. In this paper, inspired by the “center-surround” structure of the receptive fields in the retina, and the amount of overlap that they have, a robust SNN is implemented. It is based on the Integrate-and-Fire (IF) neuron model and uses the time-to-first-spike coding to train the network by a newly proposed method. The Iris and MNIST datasets were employed to evaluate the performance of the proposed network whose accuracy, with 60 input neurons, was 96.33% on the Iris dataset. The network was trained in only 45 iterations indicating its reasonable convergence rate. For the MNIST dataset, when the gray level of each pixel was considered as input to the network, 600 input neurons were required, and the accuracy of the network was 90.5%. Next, 14 structural features were used as input. Therefore, the number of input neurons decreased to 210, and accuracy increased up to 95%, meaning that an SNN with fewer input neurons and good skill was implemented. Also, the ABIDE1 dataset is applied to the proposed SNN. Of the 184 data, 79 are used for healthy people and 105 for people with autism. One of the characteristics that can differentiate between these two classes is the entropy of the existing data. Therefore, Shannon entropy is used for feature extraction. Applying these values to the proposed SNN, an accuracy of 84.42% was achieved by only 120 iterations, which is a good result compared to the recent results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of Spiking Neural Nets-Based Image Classification Using the Runtime Simulator RAVSim;International Journal of Neural Systems;2023-08-17

2. A Prediction Model Based on Gated Nonlinear Spiking Neural Systems;International Journal of Neural Systems;2023-04-12

3. DynSNN: A Dynamic Approach to Reduce Redundancy in Spiking Neural Networks;ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2022-05-23

4. An Experimental Study of Neural Approaches to Multi-Hop Inference in Question Answering;International Journal of Neural Systems;2022-02-16

5. Stream-based explainable recommendations via blockchain profiling;Integrated Computer-Aided Engineering;2021-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3