Identification of Hidden Sources by Estimating Instantaneous Causality in High-Dimensional Biomedical Time Series

Author:

Koutlis Christos1,Kimiskidis Vasilios K.2,Kugiumtzis Dimitris1

Affiliation:

1. Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

2. Laboratory of Clinical Neurophysiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

Abstract

The study of connectivity patterns of a system’s variables, such as multi-channel electroencephalograms (EEG), is of utmost importance towards a better understanding of its internal evolutionary mechanisms. Here, the problem of estimating the connectivity network from multivariate time series in the presence of prominent unobserved variables is addressed. The causality measure of partial mutual information from mixed embedding (PMIME), designed to estimate direct lag-causal effects in the presence of many observed variables, is adapted to estimate also zero-lag effects, the so-called instantaneous causality. We term the proposed advanced method, PMIME0. The estimation of instantaneous causality by PMIME0 is a signature of the presence of hidden source in the observed system, as demonstrated analytically in a toy model. It is further demonstrated that the PMIME0 identifies the true instantaneous with great accuracy in a variety of high-dimensional dynamical systems. The method is applied to EEG data with epileptiform discharges (EDs), and the results imply a strong impact of unobserved confounders during the EDs. This finding comes as a possible explanation for the increased levels of causality during epileptic seizures estimated by some measures affected by the presence of a common source.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3