Phase-based causality analysis with partial mutual information from mixed embedding

Author:

Vlachos Ioannis123ORCID,Kugiumtzis Dimitris1ORCID,Paluš Milan3ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

2. Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

3. Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07 Prague 8, Czech Republic

Abstract

Instantaneous phases extracted from multivariate time series can retain information about the relationships between the underlying mechanisms that generate the series. Although phases have been widely used in the study of nondirectional coupling and connectivity, they have not found similar appeal in the study of causality. Herein, we present a new method for phase-based causality analysis, which combines ideas from the mixed embedding technique and the information-theoretic approach to causality in coupled oscillatory systems. We then use the introduced method to investigate causality in simulated datasets of bivariate, unidirectionally paired systems from combinations of Rössler, Lorenz, van der Pol, and Mackey–Glass equations. We observe that causality analysis using the phases can capture the true causal relation for coupling strength smaller than the analysis based on the amplitudes can capture. On the other hand, the causality estimation based on the phases tends to have larger variability, which is attributed more to the phase extraction process than the actual phase-based causality method. In addition, an application on real electroencephalographic data from an experiment on elicited human emotional states reinforces the usefulness of phases in causality identification.

Funder

Czech Science Foundation

Czech Academy of Sciences

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3