Affiliation:
1. Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
Abstract
The most popular algorithms for Nonnegative Matrix Factorization (NMF) belong to a class of multiplicative Lee-Seung algorithms which have usually relative low complexity but are characterized by slow-convergence and the risk of getting stuck to in local minima. In this paper, we present and compare the performance of additive algorithms based on three different variations of a projected gradient approach. Additionally, we discuss a novel multilayer approach to NMF algorithms combined with multi-start initializations procedure, which in general, considerably improves the performance of all the NMF algorithms. We demonstrate that this approach (the multilayer system with projected gradient algorithms) can usually give much better performance than standard multiplicative algorithms, especially, if data are ill-conditioned, badly-scaled, and/or a number of observations is only slightly greater than a number of nonnegative hidden components. Our new implementations of NMF are demonstrated with the simulations performed for Blind Source Separation (BSS) data.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献