On Rank Selection in Non-Negative Matrix Factorization Using Concordance

Author:

Fogel Paul1ORCID,Geissler Christophe1,Morizet Nicolas1ORCID,Luta George2ORCID

Affiliation:

1. Mazars, Tour Exaltis, 61 Rue Henri-Régnault, 92400 Courbevoie, France

2. Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, 3700 O St NW, Washington, DC 20057, USA

Abstract

The choice of the factorization rank of a matrix is critical, e.g., in dimensionality reduction, filtering, clustering, deconvolution, etc., because selecting a rank that is too high amounts to adjusting the noise, while selecting a rank that is too low results in the oversimplification of the signal. Numerous methods for selecting the factorization rank of a non-negative matrix have been proposed. One of them is the cophenetic correlation coefficient (ccc), widely used in data science to evaluate the number of clusters in a hierarchical clustering. In previous work, it was shown that ccc performs better than other methods for rank selection in non-negative matrix factorization (NMF) when the underlying structure of the matrix consists of orthogonal clusters. In this article, we show that using the ratio of ccc to the approximation error significantly improves the accuracy of the rank selection. We also propose a new criterion, concordance, which, like ccc, benefits from the stochastic nature of NMF; its accuracy is also improved by using its ratio-to-error form. Using real and simulated data, we show that concordance, with a CUSUM-based automatic detection algorithm for its original or ratio-to-error forms, significantly outperforms ccc. It is important to note that the new criterion works for a broader class of matrices, where the underlying clusters are not assumed to be orthogonal.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3