RULE EXTRACTION WITH FUZZY NEURAL NETWORK

Author:

D’ALCHÉ-BUC FLORENCE1,ANDRÈS VINCENT1,NADAL JEAN-PIERRE1

Affiliation:

1. Laboratoires d’Electronique Philips, B.P. 15, 22 avenue Descartes, 94453 Limeil-Brévannes Cedex, France

Abstract

This paper deals with the learning of understandable decision rules with connectionist systems. Our approach consists of extracting fuzzy control rules with a new fuzzy neural network. Whereas many other works on this area propose to use combinations of nonlinear neurons to approximate fuzzy operations, we use a fuzzy neuron that computes max-min operations. Thus, this neuron can be interpreted as a possibility estimator, just as sigma-pi neurons can support a probabilistic interpretation. Within this context, possibilistic inferences can be drawn through the multi-layered network, using a distributed representation of the information. A new learning procedure has been developed in order that each part of the network can be learnt sequentially, while other parts are frozen. Each step of the procedure is based on the same kind of learning scheme: the backpropagation of a well-chosen cost function with appropriate derivatives of max-min function. An appealing result of the learning phase is the ability of the network to automatically reduce the number of the condition-parts of the rules, if needed. The network has been successfully tested on the learning of a control rule base for an inverted pendulum.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3