CONSTRUCTING A QUERY-ABLE RADIAL BASIS FUNCTION ARTIFICIAL NEURAL NETWORK

Author:

AUGUSTEIJN MARIJKE F.1,SHAW KELLY A.1

Affiliation:

1. University of Colorado, Colorado Springs, USA

Abstract

Artificial neural networks will be more widely accepted as standard engineering tools if their reasoning process can be made less opaque. This paper describes NetQuery, an explanation mechanism that extracts meaningful explanations from trained Radial Basis Function (RBF) networks. RBF networks are well suited for explanation generation because they contain a set of locally tuned units. Standard RBF networks are modified to identify dependencies between the inputs, to be sparsely connected, and to have an easily interpretable output layer. Given these modifications, the network architecture can be used to extract "Why?" and "Why not?" explanations from the network in terms of excitatory and inhibitory in-puts and their linear relationships, greatly simplified by a run-time pruning algorithm. These query results are validated by creating an expert system based on the explanations. NetQuery is also able to inform a user about a possible change in category for a given pattern by responding to a "How can I…?" query. This kind of query is extremely useful when analyzing the quality of a pattern set.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3