Affiliation:
1. Computer Science Centre, University of Geneva, Rue Général Dufour 24, Geneva, 1211, Switzerland
Abstract
The problem of rule extraction from neural networks is NP-hard. This work presents a new technique to extract "if-then-else" rules from ensembles of DIMLP neural networks. Rules are extracted in polynomial time with respect to the dimensionality of the problem, the number of examples, and the size of the resulting network. Further, the degree of matching between extracted rules and neural network responses is 100%. Ensembles of DIMLP networks were trained on four data sets in the public domain. Extracted rules were on average significantly more accurate than those extracted from C4.5 decision trees.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献