Transferring CNN Features Maps to Ensembles of Explainable Neural Networks

Author:

Bologna Guido1ORCID

Affiliation:

1. Department of Computer Science, University of Applied Sciences and Arts of Western Switzerland, Rue de la Prairie 4, 1202 Geneva, Switzerland

Abstract

The explainability of connectionist models is nowadays an ongoing research issue. Before the advent of deep learning, propositional rules were generated from Multi Layer Perceptrons (MLPs) to explain how they classify data. This type of explanation technique is much less prevalent with ensembles of MLPs and deep models, such as Convolutional Neural Networks (CNNs). Our main contribution is the transfer of CNN feature maps to ensembles of DIMLP networks, which are translatable into propositional rules. We carried out three series of experiments; in the first, we applied DIMLP ensembles to a Covid dataset related to diagnosis from symptoms to show that the generated propositional rules provided intuitive explanations of DIMLP classifications. Then, our purpose was to compare rule extraction from DIMLP ensembles to other techniques using cross-validation. On four classification problems with over 10,000 samples, the rules we extracted provided the highest average predictive accuracy and fidelity. Finally, for the melanoma diagnostic problem, the average predictive accuracy of CNNs was 84.5% and the average fidelity of the top-level generated rules was 95.5%. The propositional rules generated from the CNNs were mapped at the input layer by squares in which the relevant data for the classifications resided. These squares represented regions of attention determining the final classification, with the rules providing logical reasoning.

Funder

Swiss State Secretariat for Education, Research and Innovation

Publisher

MDPI AG

Subject

Information Systems

Reference50 articles.

1. Interpretability versus Explainability: Classification for Understanding Deep Learning Systems and Models;Sudars;Comput. Assist. Methods Eng. Sci.,2022

2. Rudin, C. (2018). Please stop explaining black box models for high stakes decisions. arXiv.

3. Survey and critique of techniques for extracting rules from trained artificial neural networks;Andrews;Knowl.-Based Syst.,1995

4. Diederich, J. (2008). Rule Extraction from Support Vector Machines, Springer Science and Business Media.

5. Bagging predictors;Breiman;Mach. Learn.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3