Uncorrelated Multiway Discriminant Analysis for Motor Imagery EEG Classification

Author:

Liu Ye1,Zhao Qibin2,Zhang Liqing1

Affiliation:

1. Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

2. Laboratory for Advanced Brain Signal Processing, Brain Science Institute, RIKEN, Saitama, Japan

Abstract

Motor imagery-based brain–computer interfaces (BCIs) training has been proved to be an effective communication system between human brain and external devices. A practical problem in BCI-based systems is how to correctly and efficiently identify and extract subject-specific features from the blurred scalp electroencephalography (EEG) and translate those features into device commands in order to control external devices. In real BCI-based applications, we usually define frequency bands and channels configuration that related to brain activities beforehand. However, a steady configuration usually loses effects due to individual variability among different subjects in practical applications. In this study, a robust tensor-based method is proposed for a multiway discriminative subspace extraction from tensor-represented EEG data, which performs well in motor imagery EEG classification without the prior neurophysiologic knowledge like channels configuration and active frequency bands. Motor imagery EEG patterns in spatial-spectral-temporal domain are detected directly from the multidimensional EEG, which may provide insights to the underlying cortical activity patterns. Extensive experiment comparisons have been performed on a benchmark dataset from the famous BCI competition III as well as self-acquired data from healthy subjects and stroke patients. The experimental results demonstrate the superior performance of the proposed method over the contemporary methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3