Abstract
Abstract
Objective. Classification of electroencephalography (EEG) signals with high accuracy using short recording intervals has been a challenging problem in developing brain computer interfaces (BCIs). This paper presents a novel feature extraction method for EEG recordings to tackle this problem. Approach. The proposed approach is based on the concept that the brain functions in a dynamic manner, and utilizes dynamic functional connectivity graphs. The EEG data is first segmented into intervals during which functional networks sustain their connectivity. Functional connectivity networks for each identified segment are then localized, and graphs are constructed, which will be used as features. To take advantage of the dynamic nature of the generated graphs, a long short term memory classifier is employed for classification. Main results. Features extracted from various durations of post-stimulus EEG data associated with motor execution and imagery tasks are used to test the performance of the classifier. Results show an average accuracy of 85.32% about only 500 ms after stimulus presentation. Significance. Our results demonstrate, for the first time, that using the proposed feature extraction method, it is possible to classify motor tasks from EEG recordings using a short interval of the data in the order of hundreds of milliseconds (e.g. 500 ms). This duration is considerably shorter than what has been reported before. These results will have significant implications for improving the effectiveness and the speed of BCIs, particularly for those used in assistive technologies.
Funder
Defense Advanced Research Projects Agency
Siemens Healthineers
Division of Chemical, Bioengineering, Environmental, and Transport Systems
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献