Affective Neural Responses Sonified through Labeled Correlation Alignment

Author:

Álvarez-Meza Andrés Marino1ORCID,Torres-Cardona Héctor Fabio2ORCID,Orozco-Alzate Mauricio1,Pérez-Nastar Hernán Darío1,Castellanos-Dominguez German1ORCID

Affiliation:

1. Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia

2. Transmedia Research Center, Universidad de Caldas, Manizales 170003, Colombia

Abstract

Sound synthesis refers to the creation of original acoustic signals with broad applications in artistic innovation, such as music creation for games and videos. Nonetheless, machine learning architectures face numerous challenges when learning musical structures from arbitrary corpora. This issue involves adapting patterns borrowed from other contexts to a concrete composition objective. Using Labeled Correlation Alignment (LCA), we propose an approach to sonify neural responses to affective music-listening data, identifying the brain features that are most congruent with the simultaneously extracted auditory features. For dealing with inter/intra-subject variability, a combination of Phase Locking Value and Gaussian Functional Connectivity is employed. The proposed two-step LCA approach embraces a separate coupling stage of input features to a set of emotion label sets using Centered Kernel Alignment. This step is followed by canonical correlation analysis to select multimodal representations with higher relationships. LCA enables physiological explanation by adding a backward transformation to estimate the matching contribution of each extracted brain neural feature set. Correlation estimates and partition quality represent performance measures. The evaluation uses a Vector Quantized Variational AutoEncoder to create an acoustic envelope from the tested Affective Music-Listening database. Validation results demonstrate the ability of the developed LCA approach to generate low-level music based on neural activity elicited by emotions while maintaining the ability to distinguish between the acoustic outputs.

Funder

the project: Sistema prototipo de procesamiento de bioseñales en unidades de cuidado intensivo neonatal utilizando aprendizaje de máquina

Universidad Nacional de Colombia

Universidad Nacional de Colombia and Universidad de Caldas

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference65 articles.

1. The algorithmic composition for music copyright protection under deep learning and blockchain;Wang;Appl. Soft Comput.,2021

2. Bhattacharjee, M., Mahadeva, P., and Guha, P. (2018). Time-Frequency Audio Features for Speech-Music Classification. arXiv.

3. Kühl, N., Goutier, M., Hirt, R., and Satzger, G. (2019, January 8–11). Machine Learning in Artificial Intelligence: Towards a Common Understanding. Proceedings of the HICSS, Hawaii International Conference on System Sciences, Grand Wailea, Hawaii.

4. Briot, J., and Pachet, F. (2017). Music Generation by Deep Learning—Challenges and Directions. arXiv.

5. A Functional Taxonomy of Music Generation Systems;Herremans;ACM Comput. Surv. (CSUR),2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3