Feature Selection Combining Filter and Wrapper Methods for Motor-Imagery Based Brain–Computer Interfaces

Author:

Sun Hao1,Jin Jing1,Xu Ren2,Cichocki Andrzej34

Affiliation:

1. Key Laboratory of Smart Manufacturing in Energy Chemical Process Ministry of Education, East China University of Science and Technology, Shanghai, P. R. China

2. Guger Technologies OG, Graz, Austria

3. Skolkovo Institute of Science and Technology (SKOLTECH), 121205 Moscow, Russia

4. Nicolaus Copernicus University (UMK), 87-100 Torun, Poland

Abstract

Motor imagery (MI) based brain–computer interfaces help patients with movement disorders to regain the ability to control external devices. Common spatial pattern (CSP) is a popular algorithm for feature extraction in decoding MI tasks. However, due to noise and nonstationarity in electroencephalography (EEG), it is not optimal to combine the corresponding features obtained from the traditional CSP algorithm. In this paper, we designed a novel CSP feature selection framework that combines the filter method and the wrapper method. We first evaluated the importance of every CSP feature by the infinite latent feature selection method. Meanwhile, we calculated Wasserstein distance between feature distributions of the same feature under different tasks. Then, we redefined the importance of every CSP feature based on two indicators mentioned above, which eliminates half of CSP features to create a new CSP feature subspace according to the new importance indicator. At last, we designed the improved binary gravitational search algorithm (IBGSA) by rebuilding its transfer function and applied IBGSA on the new CSP feature subspace to find the optimal feature set. To validate the proposed method, we conducted experiments on three public BCI datasets and performed a numerical analysis of the proposed algorithm for MI classification. The accuracies were comparable to those reported in related studies and the presented model outperformed other methods in literature on the same underlying data.

Funder

National key research and development program

National Natural Science Foundation of China

Introducing Talents of Discipline to Universities

Shanghai Municipal Education Commission and Shanghai Education Development Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3