AN ERP-BASED BCI USING AN ODDBALL PARADIGM WITH DIFFERENT FACES AND REDUCED ERRORS IN CRITICAL FUNCTIONS

Author:

JIN JING1,ALLISON BRENDAN Z.2,ZHANG YU1,WANG XINGYU1,CICHOCKI ANDRZEJ34

Affiliation:

1. Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

2. Cognitive Neuroscience Laboratory, Department of Cognitive Science, University of California at San Diego, La Jolla, California 92093, USA

3. Laboratory for Advanced Brain Signal Processing, Brain Science Institute, RIKEN, Wako-shi 351-0198, Japan

4. Systems Research Institute of Polish Academy of Science, Warsaw, Poland

Abstract

Recent research has shown that a new face paradigm is superior to the conventional "flash only" approach that has dominated P300 brain–computer interfaces (BCIs) for over 20 years. However, these face paradigms did not study the repetition effects and the stability of evoked event related potentials (ERPs), which would decrease the performance of P300 BCI. In this paper, we explored whether a new "multi-faces (MF)" approach would yield more distinct ERPs than the conventional "single face (SF)" approach. To decrease the repetition effects and evoke large ERPs, we introduced a new stimulus approach called the "MF" approach, which shows different familiar faces randomly. Fifteen subjects participated in runs using this new approach and an established "SF" approach. The result showed that the MF pattern enlarged the N200 and N400 components, evoked stable P300 and N400, and yielded better BCI performance than the SF pattern. The MF pattern can evoke larger N200 and N400 components and more stable P300 and N400, which increase the classification accuracy compared to the face pattern.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3