Using oscillatory and aperiodic neural activity features for identifying idle state in SSVEP-based BCIs reduces false triggers

Author:

Wang Rui,Zhou Tianyi,Li ZhengORCID,Zhao Jing,Li XiaoliORCID

Abstract

Abstract Objective. In existing studies, rhythmic (oscillatory) components were used as main features to identify brain states, such as control and idle states, while non-rhythmic (aperiodic) components were ignored. Recent studies have shown that aperiodic (1/f) activity is functionally related to cognitive processes. It is not clear if aperiodic activity can distinguish brain states in asynchronous brain–computer interfaces (BCIs) to reduce false triggers. In this paper, we propose an asynchronous method based on the fusion of oscillatory and aperiodic features for steady-state visual evoked potential-based BCIs. Approach. The proposed method first evaluates the oscillatory and aperiodic components of control and idle states using irregular-resampling auto-spectral analysis. Oscillatory features are then extracted using the spectral power of fundamental, second-harmonic, and third-harmonic frequencies of the oscillatory component, and aperiodic features are extracted using the slope and intercept of the first-order polynomial of the spectral fit of the aperiodic component under a log-logarithmic axis. The process produces two types of feature pools (oscillatory, aperiodic features). Next, feature selection (dimensionality reduction) is applied to the feature pools by Bonferroni corrected p-values from two-way analysis of variance. Last, these spatial-specific statistically significant features are used as input for classification to identify the idle state. Main results. On a 7-target dataset from 15 subjects, the mix of oscillatory and aperiodic features achieved an average accuracy of 88.39% compared to 83.53% when using oscillatory features alone (4.86% improvement). The results demonstrated that the proposed idle state recognition method achieved enhanced performance by incorporating aperiodic features. Significance. Our results demonstrated that (1) aperiodic features were effective in recognizing idle states and (2) fusing features of oscillatory and aperiodic components enhanced classification performance by 4.86% compared to oscillatory features alone.

Funder

STI2030 Major Projects

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3