Affiliation:
1. Department of Biomedical Engineering, Tsinghua University, Beijing, P. R. China
2. Institute of Semiconductors, Chinese Academy of Sciences, Beijing, P. R. China
Abstract
The past decade has witnessed rapid development in the field of brain–computer interfaces (BCIs). While the performance is no longer the biggest bottleneck in the BCI application, the tedious training process and the poor ease-of-use have become the most significant challenges. In this study, a spatio-temporal equalization dynamic window (STE-DW) recognition algorithm is proposed for steady-state visual evoked potential (SSVEP)-based BCIs. The algorithm can adaptively control the stimulus time while maintaining the recognition accuracy, which significantly improves the information transfer rate (ITR) and enhances the adaptability of the system to different subjects. Specifically, a spatio-temporal equalization algorithm is used to reduce the adverse effects of spatial and temporal correlation of background noise. Based on the theory of multiple hypotheses testing, a stimulus termination criterion is used to adaptively control the dynamic window. The offline analysis which used a benchmark dataset and an offline dataset collected from 16 subjects demonstrated that the STE-DW algorithm is superior to the filter bank canonical correlation analysis (FBCCA), canonical variates with autoregressive spectral analysis (CVARS), canonical correlation analysis (CCA) and CCA reducing variation (CCA-RV) algorithms in terms of accuracy and ITR. The results show that in the benchmark dataset, the STE-DW algorithm achieved an average ITR of 134 bits/min, which exceeds the FBCCA, CVARS, CCA and CCA-RV. In off-line experiments, the STE-DW algorithm also achieved an average ITR of 116 bits/min. In addition, the online experiment also showed that the STE-DW algorithm can effectively expand the number of applicable users of the SSVEP-based BCI system. We suggest that the STE-DW algorithm can be used as a reliable identification algorithm for training-free SSVEP-based BCIs, because of the good balance between ease of use, recognition accuracy, ITR and user applicability.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献