Affiliation:
1. Department of Electrical Engineering, Universidad Tecnológica de Pereira, Colombia
2. Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales, Colombia
Abstract
We present a novel iterative regularized algorithm (IRA) for neural activity reconstruction that explicitly includes spatiotemporal constraints, performing a trade-off between space and time resolutions. For improving the spatial accuracy provided by electroencephalography (EEG) signals, we explore a basis set that describes the smooth, localized areas of potentially active brain regions. In turn, we enhance the time resolution by adding the Markovian assumption for brain activity estimation at each time period. Moreover, to deal with applications that have either distributed or localized neural activity, the spatiotemporal constraints are expressed through [Formula: see text] and [Formula: see text] norms, respectively. For the purpose of validation, we estimate the neural reconstruction performance in time and space separately. Experimental testing is carried out on artificial data, simulating stationary and non-stationary EEG signals. Also, validation is accomplished on two real-world databases, one holding Evoked Potentials and another with EEG data of focal epilepsy. Moreover, responses of functional magnetic resonance imaging for the former EEG data have been measured in advance, allowing to contrast our findings. Obtained results show that the [Formula: see text]-based IRA produces a spatial resolution that is comparable to the one achieved by some widely used sparse-based estimators of brain activity. At the same time, the [Formula: see text]-based IRA outperforms other similar smooth solutions, providing a spatial resolution that is lower than the sparse [Formula: see text]-based solution. As a result, the proposed IRA is a promising method for improving the accuracy of brain activity reconstruction.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computer Networks and Communications,General Medicine
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献