Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer’s with Visual Support

Author:

Khedher Laila1,Illán Ignacio A.1,Górriz Juan M.1,Ramírez Javier1,Brahim Abdelbasset1,Meyer-Baese Anke2

Affiliation:

1. Department of Signal Theory, Networking and Communications, University of Granada, Granada 18071, Spain

2. Department of Scientific Computing, Florida State University, Tallahassee, FL, USA

Abstract

Computer-aided diagnosis (CAD) systems constitute a powerful tool for early diagnosis of Alzheimer’s disease (AD), but limitations on interpretability and performance exist. In this work, a fully automatic CAD system based on supervised learning methods is proposed to be applied on segmented brain magnetic resonance imaging (MRI) from Alzheimer’s disease neuroimaging initiative (ADNI) participants for automatic classification. The proposed CAD system possesses two relevant characteristics: optimal performance and visual support for decision making. The CAD is built in two stages: a first feature extraction based on independent component analysis (ICA) on class mean images and, secondly, a support vector machine (SVM) training and classification. The obtained features for classification offer a full graphical representation of the images, giving an understandable logic in the CAD output, that can increase confidence in the CAD support. The proposed method yields classification results up to 89% of accuracy (with 92% of sensitivity and 86% of specificity) for normal controls (NC) and AD patients, 79% of accuracy (with 82% of sensitivity and 76% of specificity) for NC and mild cognitive impairment (MCI), and 85% of accuracy (with 85% of sensitivity and 86% of specificity) for MCI and AD patients.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3