STUDYING THE ROLE OF SYNCHRONIZED AND CHAOTIC SPIKING NEURAL ENSEMBLES IN NEURAL INFORMATION PROCESSING

Author:

ROSSELLÓ JOSEP L.1,CANALS VICENS1,OLIVER ANTONI1,MORRO ANTONI1

Affiliation:

1. Physics Department, University of Balearic Islands, Cra. de Valldemossa, km 7.5, Palma de Majorca, 07122, Spain

Abstract

The brain is characterized by performing many diverse processing tasks ranging from elaborate processes such as pattern recognition, memory or decision making to more simple functionalities such as linear filtering in image processing. Understanding the mechanisms by which the brain is able to produce such a different range of cortical operations remains a fundamental problem in neuroscience. Here we show a study about which processes are related to chaotic and synchronized states based on the study of in-silico implementation of Stochastic Spiking Neural Networks (SSNN). The measurements obtained reveal that chaotic neural ensembles are excellent transmission and convolution systems since mutual information between signals is minimized. At the same time, synchronized cells (that can be understood as ordered states of the brain) can be associated to more complex nonlinear computations. In this sense, we experimentally show that complex and quick pattern recognition processes arise when both synchronized and chaotic states are mixed. These measurements are in accordance with in vivo observations related to the role of neural synchrony in pattern recognition and to the speed of the real biological process. We also suggest that the high-level adaptive mechanisms of the brain that are the Hebbian and non-Hebbian learning rules can be understood as processes devoted to generate the appropriate clustering of both synchronized and chaotic ensembles. The measurements obtained from the hardware implementation of different types of neural systems suggest that the brain processing can be governed by the superposition of these two complementary states with complementary functionalities (nonlinear processing for synchronized states and information convolution and parallelization for chaotic).

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3