An Asynchronous Spiking Neural Membrane System for Edge Detection

Author:

Zhang Luping1ORCID,Xu Fei2ORCID,Neri Ferrante3ORCID

Affiliation:

1. Jiangxi Engineering Technology Research Center of Nuclear, Geoscience Data Science and System, Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, School of Information Engineering, East China University of Technology, Nanchang 330013, Jiangxi, P. R. China

2. Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

3. NICE Research Group, School of Computer Science and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK

Abstract

Spiking neural membrane systems (SN P systems) are a class of bio-inspired models inspired by the activities and connectivity of neurons. Extensive studies have been made on SN P systems with synchronization-based communication, while further efforts are needed for the systems with rhythm-based communication. In this work, we design an asynchronous SN P system with resonant connections where all the enabled neurons in the same group connected by resonant connections should instantly produce spikes with the same rhythm. In the designed system, each of the three modules implements one type of the three operations associated with the edge detection of digital images, and they collaborate each other through the resonant connections. An algorithm called EDSNP for edge detection is proposed to simulate the working of the designed asynchronous SN P system. A quantitative analysis of EDSNP and the related methods for edge detection had been conducted to evaluate the performance of EDSNP. The performance of the EDSNP in processing the testing images is superior to the compared methods, based on the quantitative metrics of accuracy, error rate, mean square error, peak signal-to-noise ratio and true positive rate. The results indicate the potential of the temporal firing and the proper neuronal connections in the SN P system to achieve good performance in edge detection.

Funder

the National Key R&D Program of China for International S&T Cooperation Projects

National Natural Science Foundation of China

Provincial Key R&D Program of Hubei

Zhejiang Lab

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3