Temporal Backpropagation for Spiking Neural Networks with One Spike per Neuron

Author:

Kheradpisheh Saeed Reza1,Masquelier Timothée2

Affiliation:

1. Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran

2. CERCO UMR 5549, CNRS – Université Toulouse 3, Toulouse, France

Abstract

We propose a new supervised learning rule for multilayer spiking neural networks (SNNs) that use a form of temporal coding known as rank-order-coding. With this coding scheme, all neurons fire exactly one spike per stimulus, but the firing order carries information. In particular, in the readout layer, the first neuron to fire determines the class of the stimulus. We derive a new learning rule for this sort of network, named S4NN, akin to traditional error backpropagation, yet based on latencies. We show how approximated error gradients can be computed backward in a feedforward network with any number of layers. This approach reaches state-of-the-art performance with supervised multi-fully connected layer SNNs: test accuracy of 97.4% for the MNIST dataset, and 99.2% for the Caltech Face/Motorbike dataset. Yet, the neuron model that we use, nonleaky integrate-and-fire, is much simpler than the one used in all previous works. The source codes of the proposed S4NN are publicly available at https://github.com/SRKH/S4NN .

Funder

National Agence Nationale de la Recherche

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Networks and Communications,General Medicine

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3